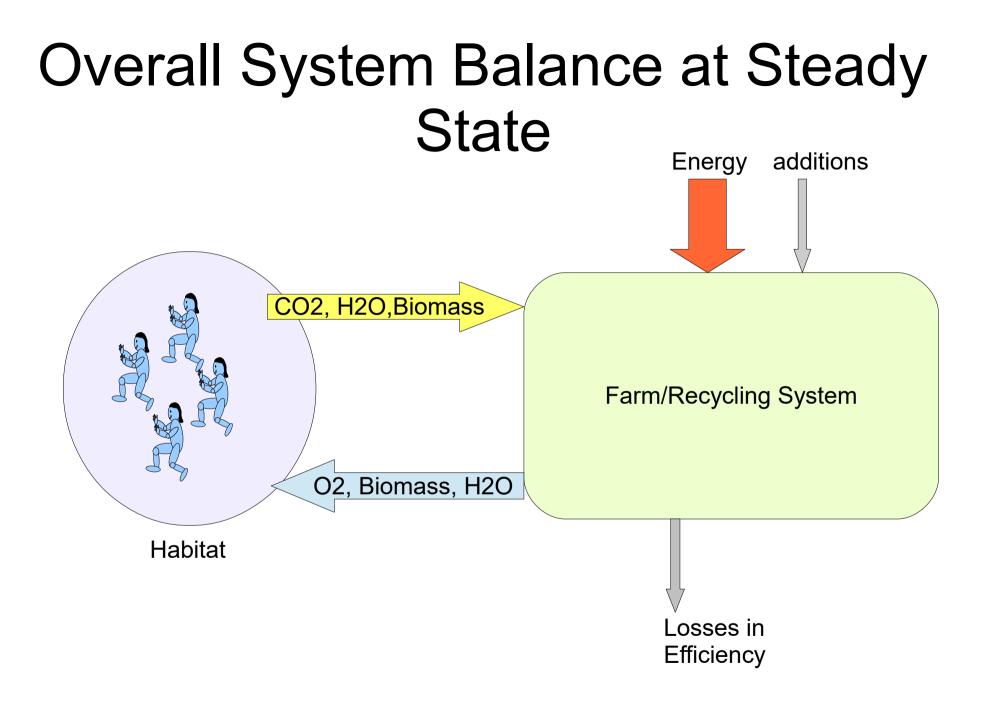
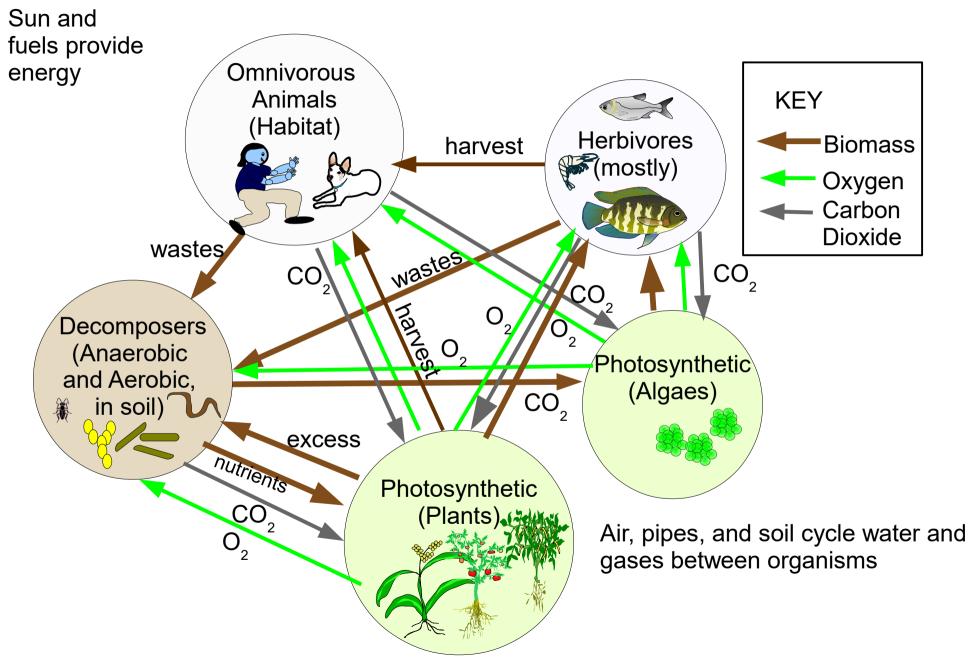

Nutrient Balance and Nitrogen Cycling In a Multistage, Multispecies Space Farm AIAA SPACE 2016

Bryce L. Meyer Nicholas Shepard

American Institute of Aeronautics and Astronautics (AIAA) SPACE 2016 Long Beach CA 13-16 Sep 2016

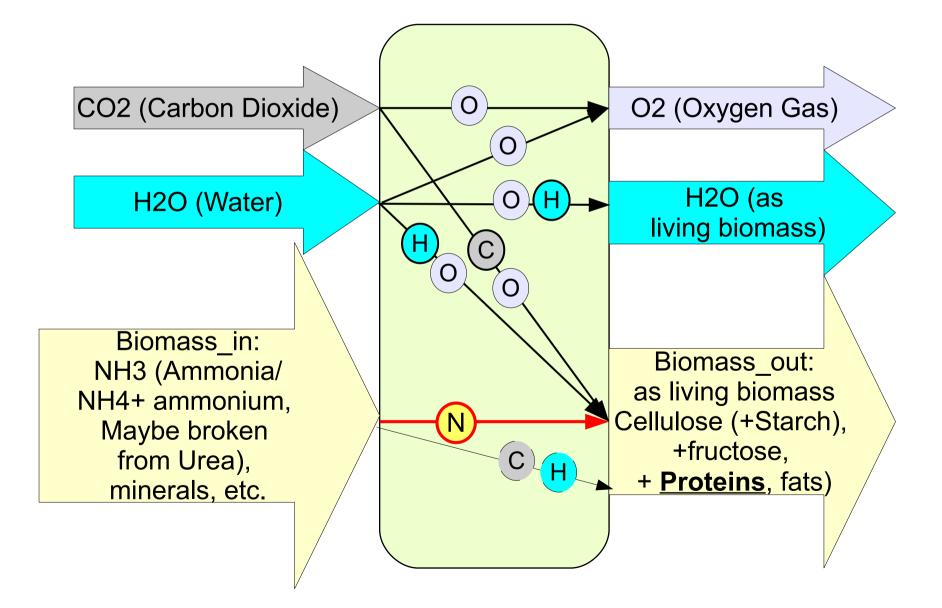
Overview

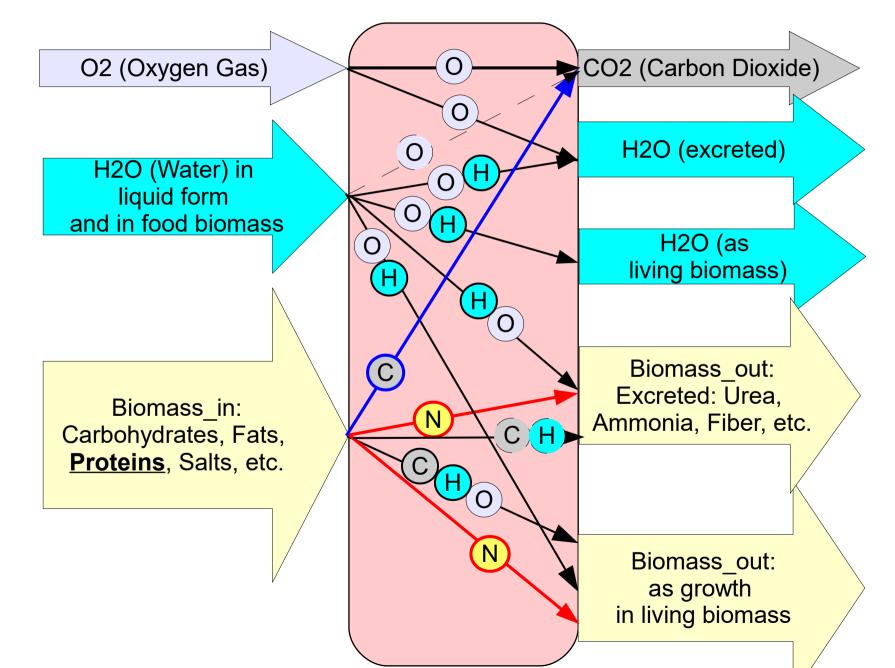

- Space Farm Basics
- Assumptions
- Mass Balances
- Habitat Needs
- Nitrogen in the Farm
- Methods
 - Simulator
- Results
 - Masses
 - Footprint


Space Farm 101

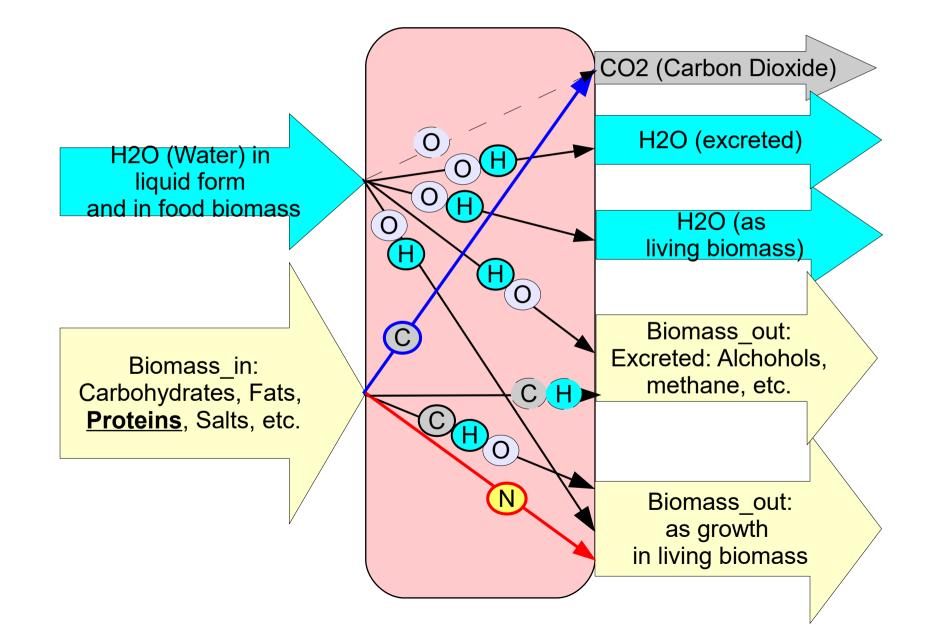
- The Closer a Space Farm and Habitat together emulate a psuedo-ecosystem, the more efficient it will be.
- Four Stage Types in this farm concept:
 - Hydroponic: Grains, Legumes, Vegitables, Fruits
 - Aquatic: Fish, Shrimp, Molluscs, other Crustaceans
 - Yeast-Bacteria Reactor: Film and Tank Bioreactor
 - Algae Reactor: High efficiency algae growth reactor

Driving Question: What combinations of species, meet the nutritional needs of the habitat, AND recycle gasses and water for mass balance, especially Nitrogen balance


An Earth Farm Example Pseudo Ecosystem


Assumptions

- Inifinite heat and electrical energy
- Gases and liquids are ideally shunted where needed by a control system
- Harvest and replacement is continuous to remove periodic nature of production.
 - Unit of examination is per living biomass
- Algae and Animals are consumed completely (for now) = all edible biomass in crop.
- Each stage maintains ideal conditions (or as noted) for each organism
- Inedible Biomass (from Hydroponic crops) can be consumed by either Yeast-Bacteria Reactor or Aquatic Organisms
 - Note only the Yeast-Bacteria Reactor can metabolize cellulose into other compounds
- Excreted biomass from animals (inc. People) can be only used by Hydroponic or Algae Reactor crops.

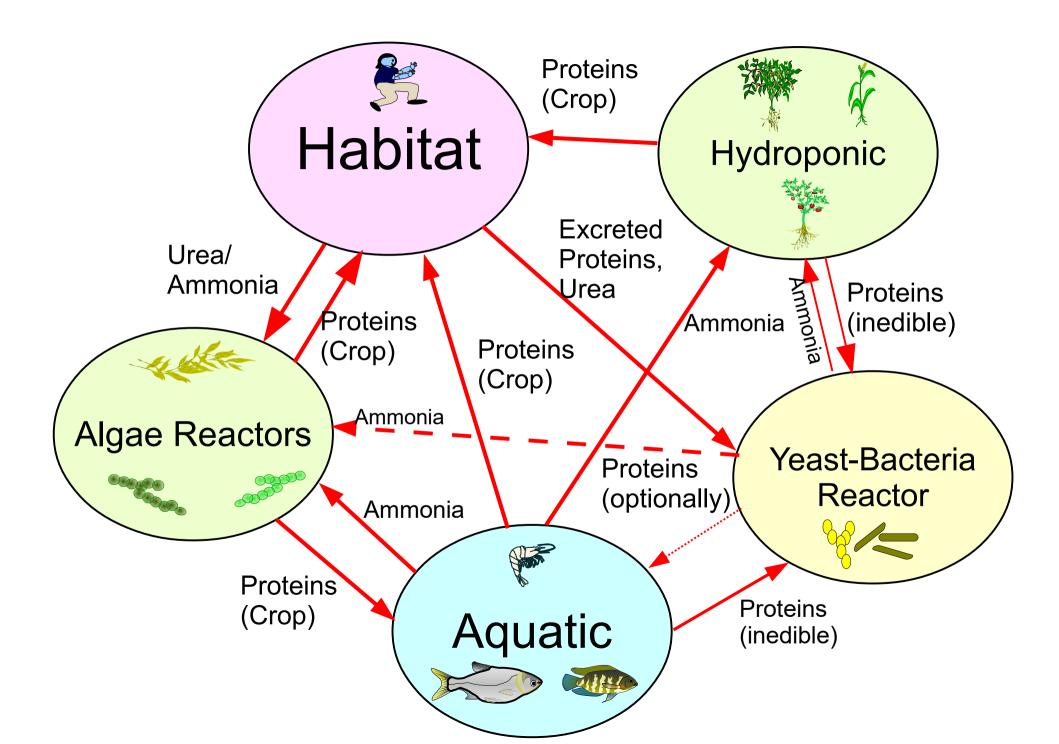

Mass Balance in Photosynthetic Organisms (i.e. Algae and Hydroponics)

Mass Balance in Aerobic Organisms (i.e. Yeast-Bacteria Reactor in Aerobic Mode, and Aquatics)

Mass Balance in Anerobic Metabolism (i.e. Yeast-Bacteria Reactor in Anerobic Mode)

Common Biological Molocules

			Atoms in Formula			Relative mass by Element						
Name	Formula	Molecular Weight ^{Ref}	С	0	н	N	S	С	0	Н	N	S
Elemental Carbon	С	12.01	1					100%	0%	0%	0%	0%
Elemental Oxygen	0	16		1				0%	100%	0%	0%	0%
Elemental Hydrogen	Н	1.01			1			0%	0%	100%	0%	0%
Elemental Nitrogen	Ν	14.01				1		0%	0%	0%	100%	0%
Elemental Sulfur	S	32.06					1	0%	0%	0%	0%	100%
Carbon Dioxide	CO2	44.01	1	2				27%	73%	0%	0%	0%
Oxygen gas	02	32		2				0%	100%	0%	0%	0%
Water	H2O	18.01		1	2			0%	89%	11%	0%	0%
Fructose (and most dietary												
Carbohydrates once hydrated)	C6H12O6	180.15	6	6	12			40%	53%	7%	0%	0%
Cellulose	C6H10O5	162.14	6	5	10			44%	49%	6%	0%	0%
Starch (i.e. Chains of				_								
unhydrated monosaccarides)	(C6H10O5)n	162.14 x n	6	5	10			44%	49%	6%	0%	0%
Ethanol	C2H5OH	46.07						52%	35%	13%	0%	0%
Cholesterol (a fat)	C27H46O	386.66	27	1	46			84%	4%	12%	0%	0%
Fat Trigliceride (most fats)	C55H98O6	855.37	55	6	98			77%	11%	12%	0%	0%
Methane	CH3	15.03	1		3			80%	0%	20%	0%	0%
Urea	CH4N2O	60.06	1	1	4	2		20%	27%	7%	47%	0%
Ammonia	NH3	17.03			3	1		0%	0%	18%	82%	0%
Ammonium	NH4+	18.04			4	1		0%	0%	22%	78%	0%
Alanine	C3H7NO2	89.09	3	2	7	1		40%	36%	8%	16%	0%
Arginine	C6H14N4O2	174.2	6	2	14	4		41%	18%	8%	32%	0%
Asparagine	C4H8N2O3	132.12	4	3	8	2		36%	36%	6%	21%	0%
Aspartic acid	C4H7NO4	133.1	4	4	7	1		36%	48%	5%	11%	0%
Cysteine	C3H7NO2S	121.15	3	2	7	1	1	30%	26%	6%	12%	26%
Glutamic acid	C5H9NO4	147.13	5	4	9	1		41%	43%	6%	10%	0%
Glutamine	C5H10N2O3	146.15	5	3	10	2		41%	33%	7%	19%	0%
Glycine	C2H5NO2	75.07	2	2	5	1		32%	43%	7%	19%	0%
Histidine	C6H9N3O2	155.16	6	2	9	3		46%	21%	6%	27%	0%
isolucine	C6H13NO2	131.17	6	2	13	1		55%	24%	10%	11%	0%
Leucine	C6H13NO2	131.18	6	2	13	1		55%	24%	10%	11%	0%
lycine	C6H14N2O2	146.19	6	2	14	2		49%	22%	10%	19%	0%
Methionine	C5H11NO2S	149.21	5	2	11	1	1	40%	21%	7%	9%	21%
Phenylalanine	C9H11NO2	165.19	9	2	11	1		65%	19%	7%	8%	0%
Proline	C5H9NO2	115.13	5	2	9	1		52%	28%	8%	12%	0%
Serine	C3H7NO3	105.09	3	3	7	1		34%	46%	7%	13%	0%
Threonine	C4H9NO3	119.12	4	3	9	1		40%	40%	8%	12%	0%
Tryptophan	C11H12N2O2	204.23	11	2	12	2		65%	16%	6%	14%	0%
Tyrosine	C9H11NO3	181.19	9	3	11	1		60%	26%	6%	8%	0%
Valine	C5H11NO2	117.15	5	2	11	1		51%	27%	9%	12%	0%
Amino Acid Average			5.35	2.45	9.85	1.45	1	46%	30%	7%	15%	2%


What Does a Person Need?

Inputs per person per day: 5kg Water in food and drink, 0.59 kg Oxygen, and at least .07 kg Fats, 0.32 Carbohydrates, 0.025 kg Fiber, 0.05 kg Proteins, and 2,000 kcal.

Outputs per person per day: 0.034 kg Dry biomass (Excreted), 0.81 kg CO₂, 5.2 kg Water

Human inputs per pers	on		%% by n	nass		kg mass				
Nutrient (Dry Biomass			_							
in)	kg/person/day	C	0	H	N	C	0	H	Ν	
Lipids+Cholesterol	0.0703	83.87%	4.14%	11.99%	0.00%	0.059	0.003	0.008	0.000	
Carbohydrates	0.3240	42.11%	51.41%	6.48%	0.00%	0.136	0.167	0.021	0.000	
Cellulose (Fiber)	0.0250	44.45%	49.34%	6.22%	0.00%	0.011	0.012	0.002	0.000	
Proteins	0.0500	45.28%	30.11%	7.20%	14.88%	0.023	0.015	0.004	0.007	
NET Oxygen in**	0.5900	0	100.00%	0	0	0.000	0.590	0.000	0.000	
Water in*	5.0000	0.00%	88.81%	11.19%	0.00%	0.000	4.441	0.559	0.000	
NET INPUT	6.059					0.229	5.227	0.594	0.007	
USABLE INPUT (i.e.										
Input -cellulose)	6.034					0.22	5.22	0.59	0.01	
Excrete (Dry Biomass	0.004					0.000	0.007	0.011	0.007	
out)	0.034					0.008	0.007	0.011	0.007	
Carbon Dioxide	0.811	27.29%	72.71%	0.00%	0.00%	0.221	0.590	0.000	0.000	
Water out	5.214	0.00%	88.81%	11.19%	0.00%	0.000	4.631	0.583	0.000	
NET OUTPUT	6.059					0.229	5.227	0.594	0.007	
* = Includes water in wet				2 liters in food						
** = NET Oxygen in is Ox	xygen inhaled – minu	s Oxygen exha	aled							

NASA guidance³, and US Recommended Daily Allowance for a 2,000 kcal diet⁴

Species Examined

٧_	SPECIES	Scientific Name	Dietary Source	Metabolic Sources	Assumptions
	Rice	Onza sp. (hybrids)	USDA NDD #200887	8,9, <i>10,11,12</i>	Efficiency is equal or greater than field production, entire plant is harvested, including roots. Planting and growth is staggerd for continuous production
Series and	RICE	Oryza sp. (hybrids)	USDA NDD #20000	0,9,10,11,12	staggerd for continuous production
	Tomato	Solanum lycopersicum (hybrids)	USDA NDD #115297	1,24,25,26	Plants are picked for fruit, and trimmed to stay the same size continuously
·	Soybeans	Glycine max (hybrids)	USDA NDD #11450 ⁷	13,14,15	Efficiency is equal or greater than field production, entire plant is harvested, including roots. Planting and growth is staggerd for continuous production
7 M					
0000	Chlorophyta	Chlorophyta sp.	Ref 30, Nutrtion facts, compared to Ref 29	28,29,30,31,32	Doubled biomass is consumed as edible biomass by humans or animals
	Spirulina	Spirulina sp.	USDA NDD #116667	22	Doubled biomass is consumed as edible biomass by humans or animals
1 Kr	Kelp	Macrocystis sp.	USDA NDD #114457	21	All plant is edible. Growth is continuously trimmed to provide edible biomass
	Silver Carp	Hypophthalmichthys molitrix	USDA NDD #150087	16	Entire mature organism is consumed. Breeders and small juvenilles are a very small mass relative to crop. Crop is staggered to allow continuous harvest and replacement.
T	Tilapia	Oreochromis sp.	USDA NDD #152617	17,18	Entire mature organism is consumed. Breeders and small juvenilles are a very small mass relative to crop. Crop is staggered to allow continuous harvest and replacement.
And the second s	Shrimp	Litopenaeus sp. Or Macrobrachum sp.	USDA NDD #152707	19,20,21	Entire mature organism is consumed. Breeders and small juvenilles are a very small mass relative to crop. Crop is staggered to allow continuous harvest and replacement. Growth is at least as good as pond rearing.
		maer oor acriain sp.		10,20,21	pone rounny.
	Voast Bactoria Boactor	Many species on film			Excretes produced only from protein aerobic or anerobic respiration, edible biomass only produced as needed if the system is lacking
-	Yeast-Bacteria Reactor	and in tanks	USDA NDD #18375 ⁷	27	biomass

Method

- Determine mass balance per living kg per organism per day
 - Include Nitrogen balance
- Given Habitat needs per person, run a Monte Carlo Analysis using a simulator written in PERL/XML to get at least one solution where:
 - Meets all human nutrition and habitat mass balance requirements (i.e. Oxygen, water in, CO2, excretes out).
 - Mass Balances across farm and habitat
 - Balances Nitrogen and Biomass Types
 - Minimum total mass of living organisms in farm
- Use solution with estimate factors to get size.

Mass Balance per living kg per day

			kg per k	kg live mass pe	r day produ	ctive		
		lr.	nputs			Ouf	tputs	
				Biomass_in				Biomass out
Crop	CO2	H2O	O2	(total)	CO2	H2O	O2	(total)
Rice	0.01214	0.00507	0	0.00024	0	0.00062	0.00908	0.00776
Tomato	0.02349	0.140137	0	0.00156	0	0.13052	0.01923	0.01543
Soybeans	0.01841	0.020902	0	0.00243	0	0.01397	0.01090	0.01688
Chlorophyta	0.01557	0.83397	0	0.00176	0	0.82800	0.01409	0.00920
Spirulina	0.00873	0.05260	0	0.00075	0	0.05206	0.00443	0.00559
Kelp	0.00398	0.017634	0	0.00136	0	0.01614	0.00298	0.00386
Silver Carp	0	0.002079	0.003840	0.00446	0.005281	0.00424	0	0.00086
Tilapia	0	0.004723	0.001466	0.10000	0.002016	0.00474	0	0.09944
Shrimp	0	0.006519	0.009600	0.01506	0.013204	0.00652	0	0.01145

These estimates were the core inputs for the simulator. Loaded into an XML file per species.

Mass Balance (total and nitrogen) per live kg per species per day

		Ма	ss (kg) dry bi	omass per kg	live mass per	day productiv	'e		
		тот	AL		Nitrogen				
			Biomass	Biomass out			Biomass out	Biomass out	
		Biomass out	out growth	growth		Biomass out	growth	growth	
Crop	Biomass in	excrete	edible	inedible	Biomass in	excrete	edible	inedible	
Rice	0.00024	0	0.003374	0.004387	0.000111	0	0.00006898	0.0000417	
Tomato	0.00156	0	0.004800	0.01063	0.000614	0	0.00007353	0.0005403	
Soybeans	0.00243	0	0.003780	0.01310	0.000794	0	0.00006896	0.0007251	
Chlorophyta	0.00176	0	0.009200	0	0.000610	0	0.0006099	0	
Spirulina	0.00075106	0	0.005589	0	0.000494	0	0.0004944	0	
Kelp	0.00136	0	0.003861	0	0.000042	0	0.0000418	0	
Silver Carp	0.00446	0.000198	0.000661	0	0.000089	0.0000205	0.000068	0	
Tilapia	0.10000	0.098061	0.001375	0	0.004319	0.0041445	0.000175	0	
Shrimp	0.01506	0.009639	0.001815	0	0.000820	0.0005741	0.000246	0	

These estimates were also inputs for the simulator. Loaded into the species' XML file.

Human Edible Crop assay per crop kg per live kg per species per day

		kg per kg live l	biomass per da	ay Human Usa	ble	
Crop	Kcal	Carbohydrate	Fats	Proteins	Fiber	N
Rice	13.00	0.0025861	0.0000373	0.0004842	0.0002141	0.000068981
Tomato	13.14	0.0028058	0.0001443	0.0006239	0.00086553	0.000073532
Soybeans	15.89	0.0011382	0.0007004	0.0013339	0.0004326	0.000068959
Chlorophyta	3.77	0.0018400	0.0018400	0.0041400	0.0004600	0.0006099
Spirulina	14.99	0.0013894	0.0002239	0.0034015	0.000229654	0.00049435
Kelp	8.6	0.0018931	0.00011078	0.00029034	0.000257163	0.0000417932
Silver Carp	3.48	0.000000	0.0001526	0.0004686	0.0000000	0.0000683
Tilapia	5.87	0.000000	0.0001039	0.0012140	0.0000000	0.0001748
Shrimp	7.08	0.0000000	0.0000424	0.0016702	0.0000000	0.0002461

Ex: 1 kg of living rice plant produces 13 kcal per day on average.

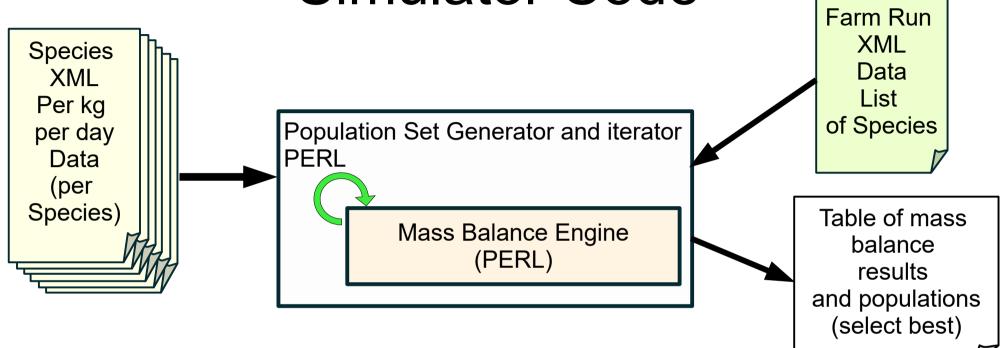
These estimates were also inputs for the simulator. Loaded into the species' XML file.

Pre-Sim Calculations: How much live organism assuming 1 species, for each habitat need.

kg living mass to meet Habitat Needs for each person per day per category (no overgrowth)									
Сгор	Crop Habitat O2 in Habitat CO2 of								
Rice	65.007	66.816							
Tomato	30.678	34.549							
Soybeans	54.104	44.066							
Chlorophyta	41.863	52.127							
Spirulina	133.114	93.004							
Kelp	198.275	203.866							

Ex: It would take ~65 kg of live rice plant to produce enough oxygen for a person to breathe, but 66 kg of live rice plant to use a person's CO_2 .

This is lower than dietary requirements....see next slide


Pre-Sim Calculations:

How much live organism assuming 1 species, to produce enough for each dietary habitat need.

	kg living ma	ss to meet Habitat Neo	eds for each p	erson per cate	gory (no over	growth)	Maximum Pop	
Crop	Kcal	Carbohydrate	Fats	Proteins	Fiber	Ν	(living kg)	
Rice	153.81	125.29	1885.27	103.26	116.79	106.79	1885.27	
Tomato	152.26	115.48	487.33	80.14	28.88	100.18	487.33	
Soybeans	125.88	284.65	100.37	37.48	57.79	106.82	284.65	
Chlorophyta	530.22	176.09	38.21	12.08	54.35	12.08	530.22	
Spirulina	133.44	233.19	313.96	14.7	108.86	14.9	313.96	
Kelp	232.57	171.15	634.6	172.21	97.21	176.25	634.6	
Silver Carp	574.8	N/A	460.82	106.71	N/A	107.86	574.8	
Tilapia	340.91	N/A	676.68	41.19	N/A	42.14	676.68	
Shrimp	282.35	N/A	1658.91	29.94	N/A	29.94	1658.91	

Ex: It would take ~154 kg of live rice plant to produce enough grain to get 2000 kcal per day, but 1,885 kg of live rice plant to produce enough grain to get enough fat. The fat value drives a maximum population of rice plants of 1885 kg.

Simulator Code

- 1) Maximum Population was initial seed to random number generator
- 2) tightened range as runs progressed around populations that got close to goals
- Near Solution after 130,000 runs (took <10mins for all)

Best Solution from 130k runs (per person)

		kg of food to Habitat per		
Сгор	Live kg of total organism	person (raw wet mass)	% kcal	Nitrogen in Food (kg)
Rice	2	0.01	1.30%	0.0001380
Tomato	2	0.15	1.31%	0.0001471
Soybeans	193	0.39	38.19%	0.0033149
Chlorophyta	5	0.51	0.94%	0.0030496
Spirulina	5	0.29	3.75%	0.0024718
Kelp	2	0.04	0.86%	0.0000836
Silver Carp	71	0.19	12.35%	0.0048490
Tilapia	25	0.15	7.33%	0.0043698
Shrimp	385	0.8	33.96%	0.0235946
Yeast-Bacteria Reactor	24.3			

i.e. Menu-wise, lots of options. Cooked, this is roughly a $\frac{1}{4}$ cup of rice, 2 tomatoes, 2 cups of soybeans, a big plate of shrimp, a patty of fish, a leaf of kelp, and a $\frac{1}{4}$ cup of other algae (though more likely a few tablespoons of dry powder).

How Big is the Farm-Solution to Balance 100 people?

•Many 'guesses' at volumes and machinery masses, results in 6 hecares, 3 meters high

				multiplier for structure					
				(total size of	stage				
		space ratio in	m ³ for this living	• •	volume in		Footprint	Footprint	Footprint
Crop	living kg	living kg/m ³	kg	living m ³)	m³	height (m)	(m²)	(hectares)	(acres)
Rice	200	0.9	222.22	3	666.67	3	222.22	0.02	0.05
Tomato	200	0.5	400	3	1200	3	400	0.04	0.1
Soybeans	19300	0.5	38600	3	115800	3	38600	3.86	9.54
Chlorophyta	500	500	1	2	2	3	0.67	0.00	0.000165
Spirulina	500	500	1	2	2	3	0.67	0.00	0.000165
Kelp	200	10	20	2	40	3	13.33	0.00	0.003295
Silver Carp	7100	50	142	2.5	355		118.33	0.01	0.029241
Tilapia	2500	50	50	2.5	125		41.67	0.00	0.010296
Shrimp	38500	50	770	2.5	1925	2	641.67	0.06	0.158559
Yeast-Bacteria									
Reactor	2429.69	500	4.86	2	9.72	3	3.24	0.00	0.000801
Subtotal					120,125		40,042	4	10
Multiplier for between stages					1.5				
TOTAL SIZE					180,188		60,063	6.01	14.84

Note: would need >22 metric tons to start, assuming a year to buildout and heavy use of in situ materials, to get 211 metric tons of farm.

Relative Farm Solution Footprint

Hydroponic Stages (~3.9 hectares, almost all soybeans)

Aquatic Stage, ~0.1 hectare

Algae Reactor Stages <0.01 hectares Yeast Bacteria Reactor <0.01 hectares

Conclusions/Future Work

- Soybeans in this solution drive a large footprint
 - Soybeans are very loose for beans produced!
 - Might be possible to increase crop density w/scaffolds and genetics
- MANY OTHER SOLUTIONS POSSIBLE!
 - Removing soybeans may force a smaller footprint farm, or a different set of runs might arrive at a different solution.
- Future Work:
 - Examine other solutions
 - Examine construction of bioreactors

References

¹Meyer, B.L., "Of Fruits and Fishes: A Space Farm and Recycling Concept", AIAA SPACE 2015 Conference and Exposition, SPACE Conferences and Exposition, (AIAA 2015-4607)

²Wieser, M., Holden, N., Coplen, T., Böhlke, J., Berglund, M.,Brand, W. et al. Atomic weights of the elements 2011 (IUPAC Technical Report), Pure Appl. Chem. Research Triangle Park, NC: International Union of Pure and Applied Chemistry, 2013.

³Jones, H. "Design Rules for Life Support Systems, 33rd International Conference on Environmental Systems (ICES) ." ICES40, 2003-01 -2356. Vancouver, BC: Society of Automotive Engineers, Inc, 2003. http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20040012725.pdf.

⁴Guidance for Industry: A Food Labeling Guide,US Food and Drug Administration, January 2013 http://www.fda.gov/downloads/Food/GuidanceRegulation/UCM265446.pdf.

⁵Hausman, R. E.; Cooper, G. M. The cell: a molecular approach. 2004. Washington, D.C: ASM Press. ISBN 0-87893-214-3.

⁶Reeds, P.J., Dispensable and Indispensable Amino Acids for Humans ,J. Nutr. July 1, 2000 vol. 130 no. 7 1835S-1840S.

⁷United States Department of Agriculture, Agricultural Research Service, National Nutrient Database for Standard Reference Release 28, May, 2016 Software v.2.6.1, https://ndb.nal.usda.gov/ndb/foods.

⁸Pearce, G.R., Lee, J.A., Simpson, R.J., Doyle, P.T., "Sources of variation in the nutritive value of wheat and rice straws", Plant breeding and the nutritive value of crop residues, JUNE 1988 INTERNATIONAL LIVESTOCK CENTRE FOR AFRICA, http://www.fao.org/Wairdocs/ILRI/x5495E/x5495e00.htm.

⁹Tang, L., Zhu, Y., Hannaway, D., Meng, Y., Liu, L., Chen, L., Cao, W., "RiceGrow: A rice growth and productivity model",NJAS - Wageningen Journal of Life Sciences, Volume 57, Issue 1, December 2009, Pages 83–92, doi:10.1016/j.njas.2009.12.003, http://www.sciencedirect.com/science/article/pii/S1573521409000153

¹⁰ed. Manns, R., Schmidt, S., Beveridge, C., PLANTS IN ACTION A resource for teachers and students of plant science,2nd ed., © Australian Society of Plant Scientists, New Zealand Society of Plant Biologists, and New Zealand Institute of Agricultural and Horticultural Science 2010–2016, http://plantsinaction.science.uq.edu.au/content/about

References (2)

¹¹Xing,Y. Wang, , R. ,Sun, W. , An, J. , Wang, C.X. , H.J. Bao, L. Gong, X. Z.Wang, "Effect of Balanced Fertilization on Rice Nutrient Uptake, Yield, and Profit", Better Crops/Vol. 93 (2009, No. 1), http://www.ipni.net/publication/bettercrops.nsf/0/5C6E09CE82D30C73852579800070212E/\$FILE/Better %20Crops%202009-1%20p4.pdf

¹²Wu, C. ,Feng,Y. , Shohag,M. J. I., Lu, L. , Wei, Y., Gao, C. , and Yang, X., "Characterization of 68Zn uptake, translocation, and accumulation into developing grains and young leaves of high Zn-density rice genotype", J Zhejiang Univ Sci B. 2011 May; 12(5): 408–418. doi: 10.1631/jzus.B1000291, http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3087098/.

¹³Mueller, N., "Plant Nutrient Analysis: Do your soybeans have the right stuff?" 7/25/2013, iGrow, South Dakota State University Brookings, SD. http://igrow.org/agronomy/profit-tips/plant-nutrient-analysis-do-your-soybeans-have-the-right-stuff/#sthash.eHjNCXoD.dpuf.

¹⁴"Soybean Growth and Development"February 19, 2015, Corn Agronomy, University of Wisconsin, 1575 Linden Drive - Agronomy, Madison WI 53706, http://corn.agronomy.wisc.edu/Crops/Soybean/Default.aspx

¹⁵Pedersen, P., "Soybean Growth Stages", ISU Extension publication, Soybean Growth and Development, 4/9/07, Copyright 2003-2016. , Iowa State University Extension.

¹⁶Hill, W., Pegg, M. Evaluating Asian Carp Colonization Potential and Impact in the Great Lakes Final Report to Illinois-Indiana Sea Grant. Champaign, IL: Sea Grant, 2008.

¹⁷Kapetsky, J.M.; Nath, S.S. A strategic assessment of the potential for freshwater fish farming in Latin America. COPESCAL Technical Paper. No. 10. Rome, FAO. 1997. 128p, ISBN 92-5-103989-5 http://www.fao.org/docrep/005/W5268E/W5268E00.htm#TOC

¹⁸Rakocy, J.E., Tank Culture Of Tilapia,The Fish Site, 5m Publishing, 01 Nov2005, Sheffield, S35 1QN, England. http://www.thefishsite.com/articles/136/tank-culture-of-tilapia/

¹⁹Kungvankij, P., and Chua, T.E., Shrimp Culture: Pond Design, Operation And Management, NACA Training Manual Series No. 2, Food and Agriculture Organization of the United Nations and Network of Aquaculture Centres in Asia (NACA), June 1986, http://www.fao.org/docrep/field/003/ac210e/AC210E00.htm#TOC.

²⁰Walker, S. J., ECOPHYSIOLOGY OF GROWTH IN THE PACIFIC WHITE SHRIMP (LITOPENAEUS VANNAMEI), Dissertation, Texas A&M University, May 2009

References (3)

²¹Davis, D. A., Rouse, D., Amaya, E., Zelaya, O.Venero, J. Quintero, H., "Historical Review Of Feeding Protocols For The Pacific White Shrimp Litopenaeus Vannamei At Claude Peteet Mariculture Center, Gulf Shores, Alabama", AQUA 2006, World Aquaculture Society, Louisiana State University, Baton Rouge, LA, 2006.

²²Reed D.C., Rassweiler A, Arkema K.K., "Biomass rather than growth rate determines variation in net primary production by giant kelp", Ecology. 2008 Sep;89(9):2493-505.

²³Danesi, E.D., Rangel-Yagui, C.O., Sato, S., Monteiro de Carvalho, J.C., "Growth and Content of Spirulina Platensis Biomass Chlorophyll Cultivated at Different Values of Light Intensity and Temperature Using Different Nitrogen Sources", Braz J Microbiol. 2011 Jan-Mar; 42(1): 362–373. doi: 10.1590/S1517-83822011000100046, http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3768952/.

²⁴Pena, J. "Greenhouse Vegetable Production Economic Considerations, Marketing, and Financing." 30 05
2005. Texas A&M AgriLife Extension Service. 2015. http://aggie-

horticulture.tamu.edu/greenhouse/hydroponics/economics.html.

²⁵Productivity: Crop Water Information: Tomato, WATER, FAO, 2015

http://www.fao.org/nr/water/cropinfo_tomato.html

²⁶Ulissi, V., Antonucci, F., Benincasa P., Farneselli M., Tosti G., Guiducci M., Tei F., Costa C., Pallottino F., Pari L. and Menesatti P., "Article Nitrogen Concentration Estimation in Tomato Leaves by VIS-NIR Non-Destructive Spectroscopy", Sensors 2011, 11, 6411-6424; doi:10.3390/s110606411 sensors ISSN 1424-8220 www.mdpi.com/journal/sensors

²⁷Van Hoek,P., Van Dijken,J.P.,and Pronk,J.T. "Effect of Specific Growth Rate on Fermentative Capacity of Baker's Yeast", Appl Environ Microbiol. 1998 Nov; 64(11): 4226–4233.

References (4)

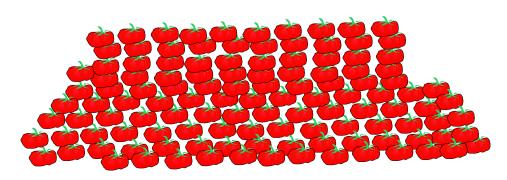
²⁸Doucha, J., Straka, F., Livansky, K. "Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor." Journal of Applied Phycology (2005): 403–412.

²⁹Phukana M.M., Chutiab R.S., Konwara, B.K., Kataki, R. . "Microalgae Chlorella as a potential bio-energy feedstock", Applied Energy 88(10):3307-3312 · September 2011

³⁰Belasco, Warren (July 1997). "Algae Burgers for a Hungry World? The Rise and Fall of Chlorella Cuisine". Technology and Culture 38(3): 608–34.doi:10.2307/3106856.JSTOR 3106856,

https://www.jstor.org/stable/3106856.

³¹"Seaweed, Chlorella, Dried" Nutrition facts, SELF Magazine, 2014 Condé Nast. http://nutritiondata.self.com/facts/custom/569428/2.


³²Csavina JL, Stuart BJ, Riefler RG, Vis ML., "Growth optimization of algae for biodiesel production", J Appl Microbiol. 2011 Aug;111(2):312-8. doi: 10.1111/j.1365-2672.2011.05064.x. Epub 2011 Jun 23.

³³Lürling, M., Eshetu, F., Faassen, E. J., Kosten, S. And Huszar, V. L. M. (2013), Comparison of cyanobacterial and green algal growth rates at different temperatures. Freshwater Biology, 58: 552–559. doi:10.1111/j.1365-2427.2012.02866.x.

³⁴Seltz, J. MEDITERRANEAN REGIONAL AQUACULTURE PROJECT, TECHNICS USED FOR INTENSIVE REARING AND ALIMENTATION OF FISH AND SHELLFISH, "Rearing Structures For Aquaculture" Ch. 10. Motta di Livenza, Itally: Food and Argicultural Organization of the United Nations, 1986.

Pre-Sim Calculations: How much edible biomass (Food) assuming 1 species, to get 2000 kcal

		kg of food (raw wet mass) to meet dietary	,
That is A LOT of Tomatoes to eat (ugh!)	Crop	kcal	Nitrogen needs
	Rice	0.56	0.39
	Tomato	11.11	7.31
	Soybeans	1.03	0.87
A small			
	Chlorophyta	53.66	1.22
tomato is	Spirulina	7.69	0.86
around 90g,	Kelp	4.65	3.52
122 small			
tomatoes =	Silver Carp	1.57	0.30
2000 kcals.	Tilapia	2.08	0.26
	Shrimp	2.35	0.25

For 100 people, how massive is the farm?

			Dry biomass inputs for 1 yr for this living mass	Total 1 year initial supply
Crop	living kg	Dry or Seed kg	(kg)	(kg)
Rice	200	87	5	292
Tomato	200	2	31	233
Soybeans	19300	193	4,697	24,190
Chlorophyta	500	5	88	593
Spirulina	500	5	38	543
Kelp	200	2	27	229
Silver Carp	7100	71	3,168	10,339
Tilapia	2500	25	25,000	27,525
Shrimp	38500	39	57,971	96,510
Yeast-Bacteria				
Reactor	2429.69	24	100	2,554
Subtotal				163,008
Add Structure	(Assume 0.3	multiplier)		48,902
TOTAL INITIAL M	IASS (kg)			211,910